Unsupervised Domain Adaptation via Regularized Conditional Alignment UCLAVISIONLAB UCLAVISIONLAB Safa Cicek and Stefano Soatto

Motivation

 $KL(P^s||P^t) > 0$ $\min_{f} E_{(x,y)\sim P^t}\ell_{CE}(f(x);y)$ $f: X \to Y$

Shared-Feature Space for UDA

[1] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014. [2] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015

DANN Aligns Marginal Distributions!

[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

Objective Functions

Exploiting Unlabeled Data with SSL Regularizers

supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976, 2017.

[1] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

Analysis

Proposition 1. The optimal joint predictor h_j minimizing $L_{jsc}(h_j) + L_{jtc}(h_j)$ for any feature z with non-zero measure either on $g \# P_x^s(z)$ or $g \# P_x^t(z)$ is

$$h_{j}(z)[i] = \frac{g \# P^{s}(z, y = e_{i})}{g \# P^{s}_{x}(z) + g \# P^{t}_{x}(z)}$$
$$h_{j}(z)[i+K] = \frac{g \# P^{t}(z, y = e_{i})}{g \# P^{s}_{x}(z) + g \# P^{t}_{x}(z)} \text{ for } i \in \{1, ..., K\}$$

Theorem 1. The objective $L_{jsa}(g) + L_{jta}(g)$ is minimized for the given optimal joint predictor if and only if

 $g \# P^s(z|y = e_k) = g \# P^t(z|y = e_k)$

 $g \# P^s(z|y = e_k) > 0 \Rightarrow g \# P^s(z|y = e_i) = 0$ for $i \neq k$ for any $y = e_k$ and z.

Comparison to SOA UDA Methods

Source dataset	MNIST	SVHN	CIFAR	STL	SYN-DIGITS	MNIST
Target dataset	SVHN	MNIST	STL	CIFAR	SVHN	MNIST-M
DANN	60.6	68.3	78.1	62.7	90.1	94.6
VADA + IN [1]	73.3	94.5	78.3	71.4	94.9	95.7
DIRT-T +IN [1]	76.5	99.4	NR	a73.3	96.2	98.7
Co-DA [2]	81.7	99.0	81.4	76.4	96.4	99.0
Co-DA + DIRT-T	88.0	99.4	NR	77.6	96.4	99.1
Ours	89.19	99.33	81.65	77.76	96.22	99.47
Source-only	44.21	70.58	79.41	65.44	85.83	70.28
Target-only	94.82	99.28	77.02	92.04	96.56	99.87

[1] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735, 2018.

[2] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, and Gregory Wornell. Co-regularized alignment for unsupervised domain adaptation. In Advances in Neural Information Processing Systems, pages 9366–9377, 2018.

Datasets