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DANN Aligns Marginal Distributions!
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Conditional Alignment
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● The joint source and target classification losses: 

● Pseudo-labels: ● The source classification loss: 

●  The joint source and target alignment losses: 
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Analysis

Datasets
Dataset Number of 

training 
samples

Number of 
test 
samples

Resolution

MNIST 60,000 10,000 28 by 28

SVHN 73,257 26,032 32 by 32

CIFAR10 50,000 10,000 32 by 32

STL 5,000 8,000 96 by 96

SYN-DIGITS 479,400 9,553 32 by 32

MNIST SVHN

CIFAR

DIGIT Classification Datasets

STL

Object Classification Datasets

Source dataset MNIST SVHN CIFAR STL SYN-DIGITS MNIST

Target dataset SVHN MNIST STL CIFAR SVHN MNIST-M

DANN 60.6 68.3 78.1 62.7 90.1 94.6

VADA + IN [1]  73.3 94.5 78.3 71.4 94.9 95.7

DIRT-T +IN [1] 76.5 99.4 NR a73.3 96.2 98.7

Co-DA [2] 81.7 99.0 81.4 76.4 96.4 99.0

Co-DA + DIRT-T 88.0 99.4 NR 77.6 96.4 99.1

Ours 89.19 99.33 81.65 77.76 96.22 99.47

Source-only 44.21 70.58 79.41 65.44 85.83 70.28

Target-only 94.82 99.28 77.02 92.04 96.56 99.87

 

Comparison to SOA UDA Methods
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Theoretic Bounds for UDA [1]

● DANN minimizes            but             can explode!     
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● With disjoint conditional alignment, our method also takes care of 2
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