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Motion planning on highways Reward function MARL.-PPS
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Environment

e Intent-aware (interaction-unaware) reward for any agent:

e An interaction-aware planning algorithm is expected to ® Interaction-aware reward for agent 1 ] ittt resat?
exhibit cooperative behavior. when agents j=2,...,J are in the I1,t =r1,¢ + Acoop Z rjt . .
e The red vehicle must maintain a predictive model of the observation range of agent 1: J=2 ® Key differences of the proposed algorithm from other DQN

based algorithms are
o The large periodic updates of the parameters of other

DQN agents.

green one for cooperative behaviour,

Flow of an RL agent o Resetting of the replay buffer with the same period.
e Moving target problem in fitted Q-learning: R I
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e Moving environment problem in MARL:

e The RL algorithm gets two modes of inputs at every 0.2 sec. L(w:) = E / [(r + ymax Q(s', a’;wy ) — Q(s, a; we))?] o Training curves for baselines and the propose@ algorithm. The
It takes the last 4 occupancy grids in its observation range in kySa Ty el o’ B T left plot shows the mean epoch rewards for different methods.
the form of binary matrices. All these grids are fed to the The rl.ght plot 1s for the average speed of the agents.

CNN. e The next state (s’) 1s function of the actions of other agents. Thus, ° Basehnesi Independent-DQN | Tampuu, 2017] and

® The last 4 ego-motion states of the vehicle are also given as environment dynamics change as policies of other agents updated. Synchronic-DQN |Gupta, 2017]. , o
input and fed to the fully connected layer for preprocessing.  In Independent-]?QN, each agent updates its DQN policy with

e Outputs of the fully connected layer are concatenated with o Policy of other agents: epsilon-greedy selection from their Q its own observations concurrently.

CNN outputs to be sent to the LSTM. estimates e In synchronic-DQN, one ego-agent updates its policy with its
® The LSTM output is fed to another fully connected layer to o Proposed solution: Update Q function of other agents with own observations and shares its parameters at every time step
get the Q-value estimates. large periods. with others. | |

e Finally, the epsilon-greedy block chooses an action with 0.2 e MARL-PPS converges to a better solution benefiting from the
sec resolution. stability of the training

MARL in POMDP setting:

The highway simulator

In POMDP case, References

o Sample observation from the buffer

o Feed hidden layer of LSTM and observation to the Q [1] Jayesh K Gupta, Maxim Egorov, andMykel Kochenderfer. 2017.
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, g Y & and competition with deep reinforcement learning. PloS one 12, 4 (2017),
trained on. e0172395.
e The top panel 1s the scene with two vehicles (red and green
rectangles) and a static obstacle to be avoided in the top lane

(black rectangle).
e The bottom panel shows the observation of the red vehicle.
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