Targeted Adversarial Perturbations for Monocular Depth Prediction

Targeted Adversarial Perturbations

Visually imperceptible signals that can not only fool a depth prediction network to output the wrong answer, but the answer we want

Attacking the Entire Scene

(i) scaling the entire scene by a factor of $1 + \alpha$
(ii) symmetrically flipping the entire scene
(iii) altering the entire scene to a preset scene

Linear Operations

Scaling Perturbations by γ

$\gamma = 0.20, 0.50, 0.75, 1.00$

Summing Perturbations

$||v_1(x)|| \approx ||v_2(x)|| \gg ||v_1(x) + v_2(x)||$

Attacking Individual Semantic Categories

Instance Conditioned Removing: Within Instance

Depth networks exploit non-local context for localized predictions

Instance Conditioned Removing: Out of Instance

Even without perturbing the instance, we can still corrupt its prediction

This work was supported by ONR N00014-19-1-2229 and ARO W911NF-17-1-0304.

GitHub: alexklwong/targeted-adversarial-perturbations-monocular-depth