

Motivation

• The key idea of our approach is to use speed of convergence as an inference criterion for the value of the unknown labels for SSL

• Supervision quality correlates to learning speed.

Cumulative loss

• To quantify learning speed, we use the cumulative loss in a fixed time (epoch) interval:

Cumulative loss as a criterion for posterior

• Cumulative loss can be written as a function of unknown label posterior to be used as a criterion.

SaaS: Speed as a Supervisor for Semi-supervised Learning Safa Cicek, Alhussein Fawzi, Stefano Soatto

Overall optimization

• The overall learning can be framed as the following optimization.

 $P^{u} = \arg\min_{P^{u}} \quad \frac{1}{T} \sum_{t=1}^{T} \ell(B_{t}^{u}, P^{u}; w_{t-1}) \qquad \text{samples in} \\ \text{mini-batch}$ $\frac{1}{|B_t^u|} \sum_{i=1}^{|B_t^u|} \ell(g_i(x_i^u), P_i^u; w_{t-1})$ $P^u = \arg\min_{P^u} \frac{1}{T} \sum_{t=1}^{T} \ell(B^u_t, P^u; w_{t-1})$

subject to $w_{t-\frac{1}{2}} = w_{t-1} - \eta_w \nabla_{w_{t-1}} \left(\ell(B_t^u, P^u; w_{t-1}) \right)$ $w_{t} = w_{t-\frac{1}{2}} - \eta_{w} \nabla_{w_{t-\frac{1}{2}}} \ell(B_{t}^{l}, P^{l}; w_{t-\frac{1}{2}}) \ \forall \ t = 1 \dots T$ $P^u \in \mathcal{S}$

Can we just minimize cumulative loss and get correct labels?

• Supervision quality correlates with learning speed *in expectation* not in every realization.

Avoiding degenerate solutions

• Weights trained with unknown labels should have almost zero training loss on (augmented) labeled data.

• Posterior of label estimates should live in probability simplex.

• Cumulative loss should be small for augmented unlabeled data.

Entropy as an additional regularizer

• Minimizing the entropy of label estimates on unlabeled data is common in SSL literature.

$$H_Q(w) = \sum_{i=1}^{N^u} -\underbrace{\langle f_w(x_i^u), \log f_w(x_i^u) \rangle}_{q(x_i^u;w)}$$

Overall optimization with entropy

• Minimizing the entropy of label estimates on unlabeled data is common in SSL literature.

 $P^u = \arg\min_{P^u} \frac{1}{T} \sum_{i=1}^{T} \ell(B^u_t, P^u; w_{t-1})$ subject to $w_{t-\frac{1}{2}} = w_{t-1} - \eta_w \nabla_{w_{t-1}} \left(\ell(B_t^u, P^u; w_{t-1}) + \beta q(B_t^u; w_{t-1}) \right)$ $w_t = w_{t-\frac{1}{2}} - \eta_w \nabla_{w_{t-\frac{1}{2}}} \ell(B_t^l, P^l; w_{t-\frac{1}{2}}) \ \forall \ t = 1 \dots T$ $P^u \in \mathcal{S}$

 $P^u \sim \mathcal{N}(0, I)$

 $w_1 \sim \mathcal{N}(0, I)$

Weights are not learned in the first phase of SaaS.

• We project label estimates to the closest probability simplex with minimum probability for a class being 0.05.

 \mathcal{S}_{c}

UCLAVISIONLAB

Algorithm

• In the beginning of each outer epoch, label estimates are projected to the probability simplex; the posterior initialized randomly.

• The inner loop performs a few epochs of SGD to measure learning speed (cumulative loss) while keeping the label posterior fixed.

• The outer loop then applies a gradient step to update the unknown-label posterior. After each update, the weights are reset.

• After the label posterior converges, we select the maximum a-posteriori estimate and proceed with training as if fully supervised in the second phase.

Select learning rates η for the weights η_w and label posteriors η_{P^u} **Phase I**: Estimate P^u while P^u has not stabilized do $P^{u} = \Pi(P^{u})$ (project posterior onto the probability simplex) $w_1 \sim \mathcal{N}(0, I)$ $\Delta P^u = 0$ // Run SGD for T steps (on the weights) to estimate loss decrease for t = 1 : T do $w_{t-\frac{1}{2}} = w_{t-1} - \eta_w \nabla_{w_{t-1}} \left(\ell(B_t^u, P^u; w_{t-1}) + \beta q(B_t^u; w_{t-1}) \right)$ $w_{t} = w_{t-\frac{1}{2}} - \eta_{w} \nabla_{w_{t-\frac{1}{2}}} \ell(B_{t}^{l}, P^{l}; w_{t-\frac{1}{2}})$ $\Delta P^u = \Delta P^u + \nabla_{P^u} \ell(\bar{B}^u_t, P^u; w_t)$ // Update the posterior distribution $P^u = P^u - \eta_{P^u} \Delta P^u$ Phase II: Estimate the weights. $\hat{y}_i^u = \arg\max_i P_i^u \ \forall i = 1, \dots, N^u$ while w has not stabilized do $w_{t-\frac{1}{2}} = w_{t-1} - \eta_w \nabla_{w_{t-1}} \frac{1}{|B_t^u|} \sum_{i=1}^{|B_t^u|} \ell(x_i^u, \hat{y}_i^u; w_{t-1})$

$w_{t} = w_{t-\frac{1}{2}} - \eta_{w} \nabla_{w_{t-\frac{1}{2}}} \frac{1}{|B_{t}^{l}|} \sum_{i=1}^{|B_{t}^{l}|} \ell(x_{i}^{l}, y_{i}^{l}; w_{t-\frac{1}{2}})$

 $\min_{w,P^u} \sum_{i=1}^{\infty} \ell(x_i, P_i^u; w)$

• This optimization problem has many trivial, degenerate solutions (Zhang et al., 2016). In SaaS, label posterior minimizing the *cumulative loss* is found. Weights of the network are not learnable parameters in the first phase of the SaaS; they are simulated with SGD dynamics.

Label thresholding on posterior

$$x = \{x \in \mathbb{R}^K : \sum_i x_i = 1, x_i \ge \alpha\}$$

- Error rates achieved b
- Compariso to other state-of-th algorithms

- (2017) 1195-1204

Results

DatasetCIFAR10-4kSVHNby SaaS.Error rate by supervised baseline on test data 17.64 ± 0.58 $11.04 \pm$ Error rate by SaaS on unlabeled data 12.81 ± 0.08 $6.22 \pm$ Error rate by SaaS on test data 10.94 ± 0.07 $3.82 \pm$ Son of SaaSVAT+EntMin Miyato et al. (2017) 10.55 3.6 Stochastic Transformation Sajjadi et al. (2016) 11.29 NTemporal Ensemble Laine and Aila (2016) 12.16 4.4	
y SaaS.Error rate by supervised baseline on test data 17.64 ± 0.58 $11.04 \pm 1.04 \pm 0.08$ Error rate by SaaS on unlabeled data 12.81 ± 0.08 6.22 ± 0.07 Error rate by SaaS on test data 10.94 ± 0.07 3.82 ± 0.07 SaaSMethod-DatasetCIFAR10-4kSVH1VAT+EntMin Miyato et al. (2017)10.55 3.82 ± 0.07 Stochastic Transformation Sajjadi et al. (2016) 11.29 NTemporal Ensemble Laine and Aila (2016) 12.16 4.4	J- 1k
y SaaS.Error rate by SaaS on unlabeled data 12.81 ± 0.08 $6.22 \pm$ Error rate by SaaS on test data 10.94 ± 0.07 $3.82 \pm$ on of SaaSMethod-DatasetCIFAR10-4kSVHVAT+EntMin Miyato et al. (2017)10.55 3.8 Stochastic Transformation Sajjadi et al. (2016) 11.29 NTemporal Ensemble Laine and Aila (2016) 12.16 4.4	: 0.50
Error rate by SaaS on test data 10.94 ± 0.07 $3.82 \pm$ on of SaaSMethod-DatasetCIFAR10-4kSVHVAT+EntMin Miyato et al. (2017)10.55 3.8 Stochastic Transformation Sajjadi et al. (2016)11.29NTemporal Ensemble Laine and Aila (2016)12.16 4.4	0.02
n of SaaS VAT+EntMin Miyato et al. (2017) 10.55 3.8 Stochastic Transformation Sajjadi et al. (2016) 11.29 N Temporal Ensemble Laine and Aila (2016) 12.16 4.4	0.09
n of SaaS VAT+EntMin Miyato et al. (2017) 10.55 3.8 Stochastic Transformation Sajjadi et al. (2016) 11.29 N Temporal Ensemble Laine and Aila (2016) 12.16 4.4	
n of SaaS VAT+EntMin Miyato et al. (2017) 10.55 3.8 Stochastic Transformation Sajjadi et al. (2016) 11.29 N Temporal Ensemble Laine and Aila (2016) 12.16 4.4	
Method-DatasetCIFAR10-4kSVHNameVAT+EntMin Miyato et al. (2017)10.553.8Stochastic Transformation Sajjadi et al. (2016)11.29NameNameTemporal Ensemble Laine and Aila (2016)12.164.4	
VAT+EntMin Miyato et al. (2017)10.553.8Stochastic Transformation Sajjadi et al. (2016)11.29NTemporal Ensemble Laine and Aila (2016)12.164.4	N-1k
e-art SSL Stochastic Transformation Sajjadi et al. (2016) 11.29 N Temporal Ensemble Laine and Aila (2016) 12.16 4.4	86
-art SSL Temporal Ensemble Laine and Aila (2016) 12.16 4.4	R
	42
GAN+FM Salimans et al. (2016) 15.59 5.8	88
Mean Teacher Tarvainen and Valpola (2017) 12.31 3.9	95
SaaS 10.94 ± 0.07 3.82 ±	0.09

• (Left) SaaS achieves better generalization with more unlabeled data. • (Middle) SaaS finds labels training on which is faster.

• (Right) By using smaller batch size, SaaS achieves better generalization with the cost of low GPU utilization and slow training. A trick we use to improve the computational cost is to use Langevin dynamics with larger batchsize.

References

• Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976 (2017) • Sajjadi, M., Javanmardi, M., Tasdizen, T.: Mutual exclusivity loss for semi- supervised deep learning. In: Image Processing (ICIP), 2016 IEEE International Conference on, IEEE (2016) 1908-1912 • Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242

• Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems. (2016) 2234-2242 • Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in neural information processing systems.

• Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)