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Visual Perception
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[1] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference 
on computer vision. 2015.
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Siamese Cat French Bulldog

Image Classification

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009.

[1]

Manual annotation is expensive.
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Semantic Segmentation

Segmentation map

Siamese Cat French Bulldog

Image Classification

Image

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009.
[2] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016.

[2]

[1]

Manual annotation is expensive.
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Sparse to Dense Depth Completion

Semantic Segmentation

Segmentation map

Siamese Cat French Bulldog

Image Classification

Image

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009.
[2] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016.
[3]  J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger. Sparsity invariant cnns. 3DV 2017.

[2]

[1]

Manual annotation is expensive.
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Unlabeled Real Data
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[1]

Image

Image

Sparse Depth

[2]
Image

[1] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016.
[2]  J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger. Sparsity invariant cnns. 3DV 2017.



Unlabeled Real Data + Labeled Virtual Data

[1] Richter, Stephan R., et al. "Playing for data: Ground truth from computer games." European conference on computer vision. Springer, Cham, 2016.
[2] Y. Cabon, N. Murray, M. Humenberger. Virtual KITTI 2. Preprint 2020.

[2]

8/129

Sparse Depth

Groundtruth

Image

Segmentation map

Image
[1]

[2]



Dependency of Unlabeled Data Labels and Model Parameters
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[1] Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien. "Semi-supervised learning (chapelle, o. et al., eds.; 2006)." IEEE Transactions on Neural Networks 20.3 (2009): 542-542.
[2] Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

● Shaded variables are fully observed.

Discriminative supervised
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[1] Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien. "Semi-supervised learning (chapelle, o. et al., eds.; 2006)." IEEE Transactions on Neural Networks 20.3 (2009): 542-542.
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Dependency of Unlabeled Data Labels and Model Parameters
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[1] Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien. "Semi-supervised learning (chapelle, o. et al., eds.; 2006)." IEEE Transactions on Neural Networks 20.3 (2009): 542-542.
[2] Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

● Shaded variables are fully observed.

Discriminative Regularized
Discriminative unsupervisedDiscriminative supervised



Max-margin (Cluster, Low-density) Assumption

12/129

● Large circles (4+4) are labeled 
samples.

● Small dots are unlabeled 
samples.

Data
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● Large circles (4+4) are labeled 
samples.

● Small dots are unlabeled 
samples.

● Without regularization, only 
using labeled samples.

Data Learned Decision Boundaries



Max-margin (Cluster, Low-density) Assumption

14/129

● Large circles (4+4) are labeled 
samples.

● Small dots are unlabeled 
samples.

● Without regularization, only 
using labeled samples.

● With regularization (e.g. VAT [1]), 
also using unlabeled samples.

Data Learned Decision Boundaries

[1] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2017). Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv preprint 
arXiv:1704.03976.



SaaS: Speed as a Supervisor for 
Semi-supervised Learning
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[1] Cicek, Safa, Alhussein Fawzi, and Stefano Soatto. Saas: Speed as a supervisor for semi-supervised learning. Proceedings of the European Conference on Computer 
Vision (ECCV). 2018.



Semi-supervised Learning
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Supervised
 

Semi-supervised



SaaS: Speed as a Supervisor for Semi-supervised Learning 

17/129



SaaS: Speed as a Supervisor for Semi-supervised Learning 
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SaaS

● Inner loop to 
measure ease of 
training for the 
current 
pseudo-labels.

● Outer loop to 
update the 
pseudo-labels.
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SaaS

● Inner loop to 
measure ease of 
training for the 
current 
pseudo-labels.



Objective Function
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● Cumulative loss: area under the loss curve up to a small number of epochs. 



Degenerate Solutions to Cumulative Loss
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● Supervision quality correlates with learning speed in 
expectation not in every realization.
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● Supervision quality correlates with learning speed in 
expectation not in every realization.

○ Posterior of label estimates should live in 
probability simplex.

○ Entropy minimization [1,2]

○ Cumulative loss should be small for 
augmented unlabeled data.

[1] Grandvalet, Yves, and Yoshua Bengio. "Semi-supervised learning by entropy minimization." Advances in neural information processing systems. 2005.
[2] Krause, Andreas, Pietro Perona, and Ryan G. Gomes. "Discriminative clustering by regularized information maximization." Advances in neural information processing 
systems. 2010.
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● Supervision quality correlates with learning speed in 
expectation not in every realization.

○ Posterior of label estimates should live in 
probability simplex.

○ Entropy minimization [1,2]

○ Cumulative loss should be small for 
augmented unlabeled data.

○ A strong network can fit to completely random 
labels [3].

■ So, we measure the speed after a few 
epochs of training.

[1] Grandvalet, Yves, and Yoshua Bengio. "Semi-supervised learning by entropy minimization." Advances in neural information processing systems. 2005.
[2] Krause, Andreas, Pietro Perona, and Ryan G. Gomes. "Discriminative clustering by regularized information maximization." Advances in neural information processing 
systems. 2010.
[3] Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." arXiv preprint arXiv:1611.03530 (2016).

This is not equivalent to our optimization.



25/129

SaaS

● Outer loop to 
update the 
pseudo-labels.
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SaaS

● Learn the model 
weights from the 
final pseudo-labels.
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CIFAR10-4K SVHN-1K

Error rate by supervised baseline on test data 17.64 ± 0.58 11.04 ± 0.50

Error rate by SaaS on unlabeled data 12.81 ± 0.08 6.22 ± 0.02

Error rate by SaaS on test data 10.94 ± 0.07 3.82 ± 0.09

● Comparison to the baseline.

Empirical Evaluations
 



Empirical Evaluations
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● The more unlabeled data the better generalization.



Empirical Evaluations
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● M is the number of pseudo-label updates.

● SaaS finds labels training on which is faster.
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Empirical Evaluations

[1] Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results.
[2] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2017). Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv preprint 
arXiv:1704.03976.

Mean Teacher [1] VAT [2] SaaS

SVHN-1K 3.95 3.86 3.82 ± 0.09

CIFAR-4K 12.31 10.55 10.94 ± 0.07

● Comparison to state of the art.



Input and Weight Space Smoothing for
Semi-supervised Learning

[1] Cicek, Safa, and Stefano Soatto. Input and Weight Space Smoothing for Semi-supervised Learning. Proceedings of the IEEE International Conference on 
Computer Vision (ICCV) Workshops. 2019.

31/129



Motivation for Input and Weight Space Smoothing
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Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial 
perturbations." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2017.

● Small adversarial perturbations are 
nuisances for the tasks that we are 
interested in.
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● Small adversarial perturbations are 
nuisances for the tasks that we are 
interested in.

● Converging to a flat-minimum 
improves generalization [1, 2].

Keskar, N. S., et. al.. (2016). On large-batch training for deep 
learning: Generalization gap and sharp minima.

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial 
perturbations." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2017.

[1] Hochreiter, Sepp, and Jürgen Schmidhuber. "Flat minima." Neural Computation 9.1 (1997): 1-42.
[2] Chaudhari, Pratik, et al. "Entropy-sgd: Biasing gradient descent into wide valleys." Journal of Statistical Mechanics: Theory and Experiment 2019.12 (2019): 124018.



Input Smoothing and Weight Smoothing do not 
Imply Each Other.
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Input Smoothing and Weight Smoothing do not 
Imply Each Other.
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● Over-parameterized networks are 
more robust to adversarial noises in 
the weight space even when they have 
the same decision boundary (i.e. the 
same input smoothness).
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[1] Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results.
[2] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2017). Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv preprint 
arXiv:1704.03976.

Mean Teacher [1] VAT [2] Ours

SVHN 3.95 3.86 3.53 ± 0.24

CIFAR 12.31 10.55 9.28 ± 0.21

Comparison to State of the art 
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Hessians of the Converged Models 

262 almost 0 eigenvalues 226 almost 0 eigenvalues 185 almost 0 eigenvalues

ABCD Trained SGD Trained Random Weights



Unsupervised Domain Adaptation via 
Regularized Conditional Alignment

[1] Cicek, Safa, and Stefano Soatto. Unsupervised domain adaptation via regularized conditional alignment. Proceedings of the IEEE International Conference on 
Computer Vision (ICCV). 2019.

38/129



Unsupervised Domain Adaptation (UDA)

Synthetic Source Real Target

?
39/129



Shared-Feature Space for UDA

Dog

Shared-Feature Space

S
ou

rc
e

Ta
rg

et

Cat Target Cat 
Target Dog

Source Dog
Source Cat

Input Space

● Moment matching between 
source and target features (e.g. 
MMD) [1,2]:

[1] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.
[2] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.
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[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

Standard Approach to UDA

Supervised 
Loss

● The source classification loss: 

Encoder
Class  Predictor



42/129[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

Supervised 
Loss

Domain
Adversarial 

Loss

Standard Approach to UDA

Domain Predictor

● The domain alignment loss: 

Encoder
Class  Predictor



DANN Aligns Marginal Distributions!
Shared-Feature SpaceInput Space

Source Dog + Target Cat 

Source Cat + Target Dog

Ta
rg

et
S

ou
rc

e

Cat Dog ● Adversarial 
domain 
alignment (e.g. 
DANN) [1]

[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014.
43/129



Conditional Alignment
Shared-Feature SpaceInput Space

Source Dog + Target Dog

Source Cat + Target Cat 

Cat Dog
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S
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e
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Joint 
domain-class 
label
Source Dog
Source Cat
...
Target Dog
Target Cat
...

Encoder:
Set it to target 
dog Joint Predictor:

Set it to source 
dog

Proposed Method
Conditional Alignment 

Module

45/129

● The joint source and target classification losses: 



Class label
Dog
Cat
...

Joint 
domain-class 
label
Source Dog
Source Cat
...
Target Dog
Target Cat
...

Encoder:
Set it to target 
dog Joint Predictor:

Set it to source 
dog

Encoder: 
Set it to dog

Class Predictor:
Set it to dog

Consistency 
Loss

Proposed Method
Conditional Alignment 

Module
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Proposed Method

● The joint source and target classification losses: 

● Pseudo-labels: 

●  The joint source and target alignment losses: 

The Joint 
Discriminator 
Feedback for 

Feature Alignment

47/129



A domain 
classifier 

Exploiting Unlabeled Data with SSL Regularizers
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● Gray dots are the learned features for the unlabeled target samples.
● Purple/Green circles are the learned features for the labeled source samples.



A domain 
classifier 

Exploiting Unlabeled Data with SSL Regularizers
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Adversarial 
Feature Matching

● Gray dots are the learned features for the unlabeled target samples.
● Purple/Green circles are the learned features for the labeled source samples.



With Input 
Smoothing [1] 

Without Input 
Smoothing

A domain 
classifier 

Exploiting Unlabeled Data with SSL Regularizers

Adversarial 
Feature Matching

[1] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv 
preprint arXiv:1704.03976, 2017.

50/129

● Gray dots are the learned features for the unlabeled target samples.
● Purple/Green circles are the learned features for the labeled source samples.



Analysis
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Comparison to SOA UDA Methods

Source dataset MNIST SVHN CIFAR STL SYN-DIGITS MNIST

Target dataset SVHN MNIST STL CIFAR SVHN MNIST-M

DANN [1] 60.6 68.3 78.1 62.7 90.1 94.6

VADA + IN [2]  73.3 94.5 78.3 71.4 94.9 95.7

Ours 89.19 99.33 81.65 77.76 96.22 99.47

Source-only 44.21 70.58 79.41 65.44 85.83 70.28

Target-only 94.82 99.28 77.02 92.04 96.56 99.87

[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014.
[2] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735, 2018.

52/129



Disentangled Image Generation for 
Unsupervised Domain Adaptation

53/129
[1] Cicek, Safa, Zhaowen Wang, Hailin Jin, Stefano Soatto, Generative Feature Disentangling for Unsupervised Domain Adaptation. Proceedings of the European 
Conference on Computer Vision (ECCV) Workshops. (2020).
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Image Translation Approach

[1] Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 2019.

● We generate the images using GauGAN [1]. 

Segmentation map Generated source image Generated target image 
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Image Translation Approach In reality, Cityscapes (Germany) 
do not have palm trees 😁

[1] Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 2019.

Segmentation map Generated target image 

● We generate the images using GauGAN [1]. 



StyleGAN

[1] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. 2019.

56/129



StyleGAN

[1] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. 2019.

57/129

Style Mixing
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Domains
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Coarse

Fine



Coarse 
Layers

Fine 
Layers

Generator

Class (y)

Domain (d)

Latent (z)
AdaIN Params for 

Fine Layers

AdaIN Params for 
Coarse Layers

FC FC

D
z

z
Y

Mapping Network

FC FC

Explicit Regularization for UDA
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Coarse 
Layers

Fine 
Layers

Class (y)

Domain (d)

Latent (z)
AdaIN Params for 
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AdaIN Params for 
Coarse Layers

FC FC

D
z

z
Y

Mapping Network

FC FC

Explicit Regularization for UDA
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Generated 
Target Image

Generated 
Source Image

Real 
Target Image

Real 
Source Image

Joint 
Discriminator Classifier{Fake, Real} {0,...,K-1}

Joint Label 
{0,..,2K-1}

UDA losses

Generator



src trgColored 
background

Colored 
digit

61/129

Colored Background and Colored Digit Datasets

[1] Gonzalez-Garcia, Abel, Joost Van De Weijer, and Yoshua Bengio. "Image-to-image translation for cross-domain disentanglement." Advances in neural information 
processing systems. 2018.



Interpolation of the Fine Layer Parameters

62/129

Generated source and target images have 
the same class label.

interpolatedsrc trg



Interpolation of the Fine Layer Parameters
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Generated source and target images have 
the same class label.

interpolatedsrc trg

Generated source and target images have 
different class labels.

interpolatedsrc trg



Interpolation of the Coarse Layer Parameters
interpolated
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src trg

Generated source and target images have 
the same class label.



Interpolation of the Coarse Layer Parameters
interpolated
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src trg

Generated source and target images have 
the same class label.

interpolatedsrc trg

Generated source and target images have 
different class labels.



Interpolation of the Fine Layer Parameters
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interpolatedsrc trg



Interpolation of the Coarse Layer Parameters

interpolated

67/129

src trg
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Learned Shared 
Representations 
at the 
Intermediate 
Layers:

src trg

Final

src trg

Inter

src trg

Final

src trg

Inter



SYN-DIGITS, MNIST, USPS, 
SVHN -> MNIST-M

Results in MSDA Benchmarks

SYN-DIGITS, MNIST, USPS, 
MNIST-M -> SVHN

69/129

SVHN, MNIST, USPS, 
MNIST-M -> SYN-DIGITS



Results in MSDA Benchmarks
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[1] Xu, Ruijia, et al. "Deep cocktail network: Multi-source unsupervised domain adaptation with category shift." Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. 2018.
[2] Peng, Xingchao, et al. "Moment matching for multi-source domain adaptation." Proceedings of the IEEE International Conference on Computer Vision. 2019.

Target dataset SVHN SYN-DIGITS MNIST USPS MNIST-M

DCTN [1] 77.5 NR NR NR 70.9

M3SDA [2] 81.32 89.58 98.58 96.14 72.82

Ours 90.71 98.91 99.65 97.20 98.45

SYN-DIGITS, MNIST, USPS, 
SVHN -> MNIST-M

SYN-DIGITS, MNIST, USPS, 
MNIST-M -> SVHN

SVHN, MNIST, USPS, 
MNIST-M -> SYN-DIGITS



Spatial Class Distribution Shift in Unsupervised 
Domain Adaptation: Local Alignment Comes to 

Rescue 

71/129

[1] Cicek, Safa, Ning Xu, Zhaowen Wang, Hailin Jin, Stefano Soatto, Spatial Class Distribution Shift in Unsupervised Domain Adaptation. Asian Conference on 
Computer Vision (ACCV). 2020.



Standard Approach to UDA

[1] Vu, Tuan-Hung, et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2019.

Supervised 
Loss

72/129

● Source classification loss



Domain
Adversarial 

Loss

Standard Approach to UDA

Supervised 
Loss

73/129

[1] Vu, Tuan-Hung, et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2019.



Spatial-class-distribution Shift
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Spatial-class-distribution Shift
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Spatial-class-distribution Shift
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Spatial-class-distribution Shift

Domain-II (GTA5): 
Images are captured 

in unrealistic scenarios 
e.g. vehicle driving on 

the sidewalk. 

Domain-I (Cityscapes): 
Images are captured 
from dashcam view 

and scenarios are 
realistic.
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Spatial-class-distribution Shift

Domain-III (SYNTHIA): 
Images are captured 
with random camera 

views.

Domain-II (GTA5): 
Images are captured 

in unrealistic scenarios 
e.g. vehicle driving on 

the sidewalk. 

Domain-I (Cityscapes): 
Images are captured 
from dashcam view 

and scenarios are 
realistic.
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● Validation errors for a binary classifier trained to distinguish binary domain labels from 
segmentation maps. 

79/129

What is the 
domain:
GTA5 or 
Cityscapes?

Spatial-class-distribution shift correlates with the receptive field.



● Domain is less identifiable for smaller receptive fields.

80/129

What is the 
domain: 
GTA5 or 
Cityscapes?

Spatial-class-distribution shift correlates with the receptive field.



● Errors for SYNTHIA are slightly lower due to the larger spatial-class shift between 
SYNTHIA and Cityscapes.

81/129

Spatial-class-distribution shift correlates with the receptive field.



Supervised 
Loss

Domain
Adversarial 

Loss

Extract 
Patch

Extract 
Patch

Proposed Method
● Predictions are aligned locally with 

the addition of g which randomly 
extracts a random patch from the 
prediction f(x).
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[1] Vu, Tuan-Hung, et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Objective Functions

where

● Adversarial domain alignment loss from [1]:

83/129



Quantitative Results: Comparison to SOA

84/129

Method Road SW Build Wall* Fence* Pole* TL TS Veg.

AdvEnt [1] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1

A+E [1] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4

MRKLD[2] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8

Ours 90.6 51.34 81.96 11.77 0.32 29.51 11.72 12.38 82.69

Method Sky PR Rider Car Bus Motor Bike mIoU mIoU-13

AdvEnt [1] 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6

A+E [1] 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

MRKLD[2] 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

Ours 84.7 58.57 24.73 81.94 36.37 17.11 41.75 44.84 51.99

[1] Vu, Tuan-Hung, et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 2019.
[2] Zou, Yang, et al. "Confidence regularized self-training." Proceedings of the IEEE International Conference on Computer Vision. 2019.
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Entropy of Predictions

SYNTHIA GTA5
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Learning Topology from Synthetic Data for 
Unsupervised Depth Completion

90/129
[1] Alex Wong, Safa Cicek, Stefano Soatto, Learning Topology from Synthetic Data for Unsupervised Depth Completion, IEEE Robotics and Automation Letters (RAL). 2021.



Sparse to Dense Depth Completion
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*VIO: Visual Inertial Odometry



Sparse to Dense Depth Completion
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Synthetic Source Real Target

?

Unsupervised Domain Adaptation (UDA)

[2]

[1] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger. Sparsity invariant cnns. 3DV 2017.
[2] Y. Cabon, N. Murray, M. Humenberger. Virtual KITTI 2. Preprint 2020.

[1]
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Bypassing the Photometric Domain Gap

[1] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger. Sparsity invariant cnns. 3DV 2017.
[2] Y. Cabon, N. Murray, M. Humenberger. Virtual KITTI 2. Preprint 2020.

Synthetic Source Real Target

?

[2] [1]
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Can we learn to infer the dense topology of the scene given only sparse points?

Sparse Depth Dense Depth

5

0

[1] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison. Scenenet rgb-d: 5m photorealistic images of synthetic indoor trajectories with groundtruth. Preprint 2016.

[1]
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The Sparsity Problem
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Feature maps are still sparse after the first convolution block.

The Sparsity Problem

Points from LIDAR (~5% density)

Features after 1st VGG Block
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ScaffNet

Sparse Depth

ScaffNet without SPP

ScaffNet with SPP
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ScaffNet
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Bringing the Image Back
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FusionNet
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FusionNet
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Qualitative Results
Image

Sparse Depth

Predicted Dense Depth
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Image

Sparse Depth

Predicted Dense Depth

0

50

[1] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger. Sparsity invariant cnns. 3DV 2017.
[2] X.Fei, A. Wong, S. Soatto. Geo-Supervised Depth Prediction. R-AL 2019 and ICRA 2019.

[1]

[2]

KITTI

VOID
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Quantitative Results

[1] F. Ma, G. V. Cavalheiro, S. Karaman. Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera. ICRA 2019.
[2] Y. Yang, A. Wong, S. Soatto. Dense Depth Posterior (DDP) from Single Image and Sparse Range. CVPR 2019.
[3] A. Wong. X. Fei, S. Tsuei, S. Soatto. Unsupervised Depth Completion from Visual Inertial Odometry. R-AL 2020, and ICRA, 2020.

Method Parameters MAE RMSE iMAE iRMSE

ScaffNet ~1.4M 318.41 1425.53 1.39 5.01

[1] ~27.8M 358.92 1384.85 1.60 4.32

[2] ~18.8M 347.17 1310.03 n/a n/a  

[3] ~9.7M 305.06 1239.06 1.21 3.71

FusionNet ~7.8M 286.35 1182.81 1.18 3.55
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Quantitative Results -- Indoor

[1] F. Ma, G. V. Cavalheiro, S. Karaman. Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera. ICRA 2019.
[2] Y. Yang, A. Wong, S. Soatto. Dense Depth Posterior (DDP) from Single Image and Sparse Range. CVPR 2019.
[3] A. Wong. X. Fei, S. Tsuei, S. Soatto. Unsupervised Depth Completion from Visual Inertial Odometry. R-AL 2020, and ICRA, 2020.

Method Parameters MAE RMSE iMAE iRMSE

[1] ~27.8M 198.76 260.67 88.07 114.96

[2] ~18.8M 151.86 222.36 74.59 112.36

[3] ~9.7M 85.05 169.79 48.92 104.02

ScaffNet ~1.4M 70.16 156.99 42.78 91.48

FusionNet ~7.8M 59.53 119.14 35.72 68.36
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Quantitative Results -- Indoor

[1] A. Wong. X. Fei, S. Tsuei, S. Soatto. Unsupervised Depth Completion from Visual Inertial Odometry. R-AL 2020, and ICRA, 2020.

● MAE for various density levels.
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[1]



Targeted Adversarial Perturbations 
for Monocular Depth Prediction

110/129

[1] Wong Alex, Safa Cicek, Stefano Soatto, Targeted Adversarial Perturbations for Monocular Depth Prediction. Conference on Neural Information Processing Systems 
(NeurIPS). 2020.



Adversarial Perturbations

+ 0.07 =

panda gibbon

[1] I. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples. ICLR 2015.
[2] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille. Adversarial Examples for Semantic Segmentation and Object Detection. ICCV 2017.

[1]

+ 

=

[3]
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Adversarial Perturbations

+10%

+ 0.07 =

panda gibbon

[1] I. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples. ICLR 2015.
[2] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille. Adversarial Examples for Semantic Segmentation and Object Detection. ICCV 2017.

[1]

+ 

=

[3]
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Original Disparity

Disparity after Perturbations

Perturbations

Targeted Attacks on 
Monocular Depth Prediction Networks



Attacking the Entire Scene
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Attacking the Entire Scene
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Original Disparity

10% Closer Overall

(i) scaling the entire scene by a 
factor of 

(iii) altering the entire scene to a 
preset scene

Horizontally Flipped

(ii) symmetrically flipping 
the entire scene

Perturbations

Preset Scene



Strong Bias on Scene Orientation
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Image

Perturbations

Original Disparity

Disparity after Perturbations

Flipped Image

Disparity of Flipped Image

Horizontal FlipVertical Flip



Adversarial Attacks in Indoor Scenes

116/129[1] W. Yin, Y. Liu, C. Shen, Y. Yan. Enforcing geometric constraints of virtual normal for depth prediction. ICCV 2019.

Original Disparity

Vertical Flip Horizontal Flip10% Closer Overall 10% Farther Overall

Perturbations

Image
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Disparity

Linear Operations:
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Original Disparity 

10% Closer Overall 10% Farther Overall 
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Disparity
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Quantitative Results
Symmetrically Flipping the Scene
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Outdoor Driving (KITTI) Indoor (NYU-V2)



Quantitative Results
Category Conditioned Scaling
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Localized Attacks on the Scene

121/129

Remove Cyclist Move Vehicle Left

(i) removing specific 
instances from the scene

(ii) moving specific instances to 
different regions of the scene



Instance Conditioned Removing 
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Instance Conditioned Removing 
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Transferability

124/129
[1] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow.  Digging into self-supervised monocular depth estimation. ICCV 2019.
[2] C. Godard, O. Mac Aodha, G. J. Brostow. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.

● Fool Monodepth2 [1] with perturbations from Monodepth [2] 



Concluding Remarks
● SSL-semantic:

○ The proposed speed of training criterion shows promising results.
○ We merge the literature branched off into two different groups by smoothing on both input and weight 

spaces. 
○ But, requirement of having real, labeled training samples for each class is not scalable.
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Concluding Remarks
● SSL-semantic:

○ The proposed speed of training criterion shows promising results.
○ We merge the literature branched off into two different groups by smoothing on both input and weight 

spaces. 
○ But, requirement of having real, labeled training samples for each class is not scalable.

● UDA-semantic:
○ The proposed conditional domain alignment method working well for the classification task, does not 

perform as well in the segmentation task.
● UDA-geometry:

○ It is possible to learn dense topology from sparse point clouds only.
○ But, it is sensitive to the density level of the input so we have to reconcile it with the image.

● Adversarial Robustness of Unsupervised Models:
○ We show networks are vulnerable to targeted adversarial perturbations -- even to non-local ones.
○ These perturbations may not cause harm in a practical transportation application.
○ The existence of adversaries is an opportunity.
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